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a  b  s t r a  c t

The AgMERRA and AgCFSR climate forcing datasets provide  daily,  high-resolution,  continuous,  meteoro-

logical  series over  the  1980–2010 period designed  for  applications  examining the  agricultural  impacts

of  climate variability and climate  change. These datasets  combine  daily resolution  data from retrospec-

tive  analyses (the Modern-Era Retrospective  Analysis  for  Research  and Applications, MERRA, and  the

Climate  Forecast System Reanalysis, CFSR) with  in situ  and remotely-sensed  observational  datasets  for

temperature,  precipitation, and solar  radiation, leading  to substantial  reductions in  bias in  comparison

to  a network  of  2324  agricultural-region stations from  the  Hadley Integrated Surface Dataset  (HadISD).

Results  compare favorably against the  original  reanalyses  as well  as the  leading  climate  forcing datasets

(Princeton,  WFD,  WFD-EI, and GRASP), and AgMERRA distinguishes  itself with  substantially improved

representation  of  daily precipitation  distributions  and extreme events owing  to its  use of  the  MERRA-Land

dataset.  These  datasets  also  peg relative humidity  to the  maximum  temperature  time  of  day,  allowing

for  more  accurate  representation of the  diurnal  cycle  of  near-surface moisture in  agricultural  models.

AgMERRA  and AgCFSR enable a number  of ongoing  investigations in  the  Agricultural Model  Intercom-

parison  and Improvement  Project (AgMIP) and related research  networks,  and may be used  to fill  gaps

in  historical  observations as well as a basis  for the  generation  of future  climate  scenarios.

Published  by  Elsevier B.V.

1. Introduction

The Agricultural Model Intercomparison and Improvement

Project (AgMIP; Rosenzweig et al., 2013a)  is  conducting a wide

range of climate-impacts-oriented activities focusing on crop and

livestock models at the local level (e.g., Asseng et  al., 2013; Singels

et al., 2013; Bassu et  al., 2014; Li  et al., 2014; Ruane et al.,

2014b) and on a global grid (Rosenzweig et al., 2013b),  regional

assessments of food security (Rosenzweig et al., 2012), and global

economic impacts (e.g., Nelson et  al., 2013; von Lampe et al.,

2014). Related regional research networks such as  the Consulta-

tive Group on International Agricultural Research (CGIAR) Climate

Change, Agriculture and Food Security (CCAFS) and MACSUR (Mod-

eling European Agriculture with Climate Change for Food Security;

Rötter et al., 2013) are dealing with similar tasks. Consistency and

transparency in climate data and  methods facilitate comparisons

across regions or between models in  each of these assessments, par-

ticularly when market linkages between regions are  emphasized. In
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particular, recent advances in porting agricultural models for par-

allel processing on high-performance computing has dramatically

increased the demand for global climate datasets capable of driving

global gridded crop models (Rosenzweig et al., 2013b).  The histor-

ical period is  of primary and urgent interest, as  data from recent

years may  be used to calibrate models and serve as the basis for the

development of future climate scenarios using different statistical

methods (Wilby et al., 2004).

Here we  describe the development of two new climate forcing

datasets (AgMERRA and  AgCFSR) designed to  meet the needs of

AgMIP and similar agricultural impacts assessments (White et al.,

2011a).  As  opposed to strictly climatic datasets, particular consid-

eration is  given to agricultural areas and the climatic factors that

crops are known to respond to, including biases in mean growing

season temperature and precipitation, the seasonal cycle, interann-

ual variability, the frequency and sequence of rainfall events, and

the distribution of sub-seasonal extremes.

The root of all climate forcing datasets is the network of  in situ

meteorological observations maintained by  meteorological agen-

cies around the world. The density and quality of these stations

varies widely through space and time, with the best coverage in

developed countries and less reliable coverage in the Tropics and

http://dx.doi.org/10.1016/j.agrformet.2014.09.016
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Table  1
Overview of Climate Forcing Datasets, including the AgMERRA and AgCFSR datasets introduced here. Highest resolution is the resolution at which the data are archived and

most  finely distinguishable, although for some variables multiple grid boxes may be given the same value as  the effective resolution is more coarse.

Climate Forcing Dataset Reference Time period Highest

resolution

Reanalysis basis

(and resolution)

Monthly target for

temperature and precipitation

Princeton Sheffield et al.

(2006)

1948–2008 0.5◦ × 0.5◦ Reanalysis-1

(∼2◦)

CRU TS2.0, with corrections for

high-latitude precipitation

using GPCP and TRMM

WFD  1958–2001 0.5◦ × 0.5◦ ERA-40 (1◦) CRU TS2.1 and GPCCv4 versions

WFD-EI  Weedon et al.

(2012)

1979–2009 0.5◦ × 0.5◦ ERA-Interim

(0.4◦)

CRU TS3.1 and GPCCv5/6

versions

GRASP  Iizumi et  al.

(2014)

1961–2010 1.125◦ × 1.125◦ JRA25 (1.125◦)

and ERA-40 (2.5◦

version)

CRU TS3.10.01, time-constant

correction factors derived from

1961 to 1990.

AgMERRA  This study 1980–2010 0.25◦ × 0.25◦ MERRA

(0.5◦ × 0.67◦)

Blend of in  situ (CRU TS3.1,

GPCCv6, WM)  and satellite

(TRMM,  CMORPH,  PERSIANN)

products

AgCFSR  This study 1980–2010 0.25◦ × 0.25◦ CFSR (∼0.3◦) Blend of in  situ (CRU TS3.1,

GPCCv6, WM)  and satellite

(TRMM,  CMORPH,  PERSIANN)

products

Southern Hemisphere (Lorenz and Kunstmann, 2012). These data

are also not always accessible and transparent as they may  require

high acquisition fees, restrictive limitations on use, or additional

processing and quality control beyond the scope of many agri-

cultural modelers. Several groups have collected these data and

constructed harmonized, global gridded datasets at monthly res-

olution (New et al., 2002; Schneider et al., 2011; Willmott and

Matsuura, 1995; Hijmans et al., 2005),  however these require

weather generators to synthesize daily resolution before they may

be applied to crop models and  are therefore likely to  miss events

that are important to the calibration and  validation of agricultural

models. Regional gridded observational networks have also been

created (e.g., E-Obs in Europe, Haylock et al., 2008;  APHRODITE

in Asia, Yatagai et al., 2012; CPC US Unified Precipitation, Higgins

et al., 2000), however many regions and variables are not covered

by any such network and intercomparing sites between regions

with different methodologies introduces inconsistencies.

The overall meteorological observational network is larger than

just stations, as weather balloons and airborne instruments provide

information about the upper atmosphere and satellite-based obser-

vations (particularly beginning in the late 1970s and including

direct estimates of precipitation since the late 1990s) augment

the entire network. The atmospheric modeling community has

developed retrospective-analyses (reanalyses) that assimilate all

available state observations into a  physically-consistent atmo-

spheric model that utilizes atmospheric structure and dynamics to

estimate spatial and variable gaps in the observations. These reanal-

yses were designed for process studies, emphasizing atmospheric

structure and circulation over some impacts-relevant variables.

Flux variables, such as precipitation and  radiation, are modeled

rather than assimilated. Additionally, 2-m temperature, wind

speed, and humidity measurements are not assimilated, as reanal-

yses rely instead on balloon (rawinsonde) networks to  assimilate in

the free atmosphere and  then model boundary–layer profiles. The

adherence to physical principles can lead to biases even at assim-

ilated locations where limitations in  model parameterizations or

spatial resolution cannot be overcome.

In an effort to correct some of the most glaring shortcomings

of the reanalyses, the land-surface hydrology community led the

development of climate forcing datasets that adjust the reanalyses’

daily time series to match the monthly gridded climate datasets.

This can prevent full closure of the water and energy cycles, but

maintains many of the most important properties for impacts

assessment. Schwalm et al. (2014) found that hydrologic models

are  quite sensitive to the selection of a climate forcing dataset in

the US, but only recently has the same question been asked of  the

agricultural models (e.g., Ruane et al., 2014a; Iizumi et al., 2014)

despite the fact that agricultural models do not have the benefit

of aggregating potentially compensating errors across watersheds.

Adam et al. (2006) note that many global gridded climate datasets

are biased toward the populated areas where stations have been set

up rather than the mountains surrounding these, for example. This

bias may  be  problematic for hydrologic catchments, but likely ben-

efits agricultural applications as  farmlands tend to be in the valleys

and plains that are  overrepresented.

This paper presents two new climate forcing datasets devel-

oped for agricultural applications utilizing a newer generation of

reanalyses that are not currently associated with any climate forc-

ing dataset. These reanalyses’ higher spatial resolution, improved

model physics, and additional sources of assimilated data hold

great potential for improved agroclimatic assessment. Section 2

describes the datasets used in  the construction, calibration, and

evaluation of the AgMERRA and AgCFSR climate forcing datasets.

Section 3 details the specifications of these new datasets and pro-

vides the complete methodology for their generation. Section 4

compares AgMERRA and AgCFSR against observations, the original

reanalyses that they are  drawn from, and existing climate forc-

ing datasets. Following a  discussion of the datasets’ strengths and

weaknesses, we  describe the potential for gap-filling applications.

Finally, we provide conclusions and next steps in the development,

extension, and application of climate forcing datasets for  agricul-

tural modeling.

2.  Datasets

2.1. Climate datasets

2.1.1. Existing climate forcing datasets

Methodologies for the development of the AgMIP climate forc-

ing datasets was motivated by similar climate forcing datasets

developed for various applications in recent years (Table 1), with

the hopes that that new datasets could provide dramatically

improved sub-monthly weather characteristics and radiation data

that would improve agricultural modeling. The Princeton Climate

Forcing Dataset (Sheffield et al., 2006)  was  developed for hydrologic

applications, deriving its daily time series from the National Cen-

ters for Environmental Prediction/National Center for Atmospheric

Research Reanalysis-1 (Kalnay et al., 1996)  and adjusting to match
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Table  2
Summary of variable construction methodologies for the AgMERRA and AgCFSR climate forcing datasets. The  effective resolution for  temperature and radiation is higher than

the  1/4◦ resolution of the climate forcing datasets if there is heavy reliance on a particular observational dataset, with the 1/4◦ resolution only coming from the interpolation

of  a more coarse value. DTR  = Diurnal temperature range.

Variable (and units) Effective resolution AgMERRA construction summary AgCFSR construction summary

Maximum and minimum

temperature (◦C)

0.5◦ Mean: MERRA daily Tmax and Tmin values

shifted by average monthly temperature

correction from CRU and WM for each month

in  each year on 1/2◦ grid

DTR:  Adjusted to be 3/4 of the way  between

MERRA and CRU  DTRs. Ensure that Tmax > Tmin

Mean: CFSR daily Tmax and Tmin values shifted

by  average monthly temperature correction

from CRU and WM for each month in each year

on  1/2◦ grid

DTR: Adjusted to be equivalent to CRU DTR.

Ensure that Tmax > Tmin

Precipitation (mm/day) 0.25◦ Wet  days: Average of MERRA-Land and CRU

wet  days for each month in each year

Mean:  MERRA-Land daily values multiplied by

correction factor imposing mean of CRU, GPCC,

and  WM for each month and each year at 1/2

resolution. 1/4◦ detail imposed from average

monthly spatial pattern drawn from ensemble

of  TRMM,  CMORPH,  and PERSIANN

Wet days: CRU wet  days for  each month in  each

year

Mean:  CFSR daily values multiplied by

correction factor imposing mean of CRU, GPCC,

and WM for each month and each year at  1/2

resolution. 1/4◦ detail imposed from average

monthly spatial pattern drawn from ensemble

of  TRMM,  CMORPH,  and PERSIANN

Solar  radiation (MJ/m2/day) 1.0◦ 07/1983–12/2007: NASA/GEWEX SRB data

linearly interpolated to 1/4◦ grid

01/1980–06/1983 and 01/2007–12/2010:

MERRA downward shortwave flux corrected

using quantile-mapping and the statistics of

SRB Beta distribution

07/1983–12/2007: NASA/GEWEX SRB data

linearly interpolated to 1/4◦ grid

01/1980–06/1983 and 01/2007–12/2010: CFSR

downward shortwave flux corrected using

quantile-mapping and the statistics of SRB

Beta  distribution

Relative  humidity at the time

of  maximum temperature (%)

0.25◦ Calculated from MERRA specific humidity,

maximum temperature, and surface pressure

and  then linearly interpolated to 1/4◦ grid.

Calculated from CFSR specific humidity,

maximum temperature, and surface pressure

and then linearly interpolated to 1/4◦ grid

Wind  speed (m/s) 0.25◦ MERRA wind speeds linearly interpolated to

1/4◦ grid

Adjusted CFSR 10-m wind speeds to 2-m

velocities and then linearly interpolated to

1/4◦ grid

CRU monthly temperature and  precipitation totals. The Water and

Global Change (WATCH) climate forcing dataset (WFD; Weedon

et al., 2011) was also developed with a hydrologic focus, using the

European Centre for Medium-range Weather Forecasting 40 year

reanalysis (ERA-40; Uppala et al., 2005)  and adjusting to match CRU

monthly temperature and precipitation totals from CRU or GPCC.

As improved and higher-resolution reanalyses have been devel-

oped to replace the ERA-40 and NCEP/NCAR Reanalysis-1, WATCH

has also created a  second climate forcing dataset (WFD-EI; Weedon

et al., 2011) applying its methodology to the next generation ERA-

Interim reanalysis (Dee et al., 2011).  The GPCC corrected versions

of the WATCH datasets are used in  the evaluations below. Iizumi

et al. (2014) have also recently created the Global Risk Assessment

for the Stable Production of Food (GRASP) meteorological forcing

dataset with an explicit agricultural focus, using a combination of

the 25-year Japanese Reanalysis (JRA-25; Onogi et  al., 2007)  and

the ERA-40 (in earlier years) and adjusting to match CRU monthly

temperature and precipitation totals using time-constant correc-

tion factors derived from a  comparison over the 1961–1990 period.

Many of these products also systematically correct the number of

rainy days, humidity, solar radiation, and  wind speed (see Table 2  of

Iizumi et al., 2014, for a review). The AgMIP climate forcing datasets

build upon these established methods, adding improved datasets

and features described below to produce new datasets that enable

AgMIP and related agricultural applications.

2.1.2. Original reanalyses

NASA’s Modern-Era Retrospective Analysis for Research and

Applications (MERRA; Rienecker et  al., 2011) forms the basis of

the AgMERRA climate forcing dataset. MERRA was  designed to

cover the satellite era  (post-1979) with a  particular focus on the

water cycle, and provides hourly output of surface meteorological

fields on a 1/2◦ latitude by  2/3◦ longitude grid. AgMERRA also util-

izes MERRA-Land (Reichle et al., 2011), a  version with additional

assimilation of the 1/2◦ × 1/2◦ Climate Prediction Center’s Unified

precipitation product (CPCU; Chen et al., 2008) from 1980 to  2005

and the CPC’s real-time product from 2006  to 2010 (Reichle, 2012).

The National Centers for Environmental Prediction Climate Fore-

cast System Reanalysis (CFSR; Saha et al., 2010)  forms the basis of

the AgCFSR climate forcing dataset, providing outputs from 1979

to present on a T382 (∼38  km)  horizontal grid. For AgCFSR we uti-

lize CFSR’s raw precipitation output rather than the gridded climate

datasets that constrained its land-surface simulations (future ver-

sions of AgCFSR may  take a  more symmetrical approach similar

to AgMERRA’s use of MERRA-Land and CPCU). As newest genera-

tion reanalyses, both MERRA and  CFSR have considerably higher

spatial resolution than older reanalyses, which eliminates the need

for the preliminary downscaling performed in the creation of the

Princeton, WFD, and GRASP forcing datasets. The NCEP/Department

of Energy Reanalysis-2 (Kanamitsu et al., 2002; which is an

update to Kalnay et  al., 1996,  Reanalysis-1) is also included

in evaluations below as  an example of intermediate-generation

reanalyses.

2.1.3. High-resolution precipitation products

High-resolution precipitation products (HRPP) combine infor-

mation from polar-orbiting microwave instruments with geosyn-

chronous infrared satellites to produce nearly continuous, 1/4◦

daily precipitation datasets (see overview and comparison with

reanalyses by  Ruane and Roads, 2007a). The climate forcing

datasets below utilize three HRPPs in their construction: the Trop-

ical Rainfall Measuring Mission 3B-42 product (TRMM;  Huffman

et al., 2007), Precipitation Estimation using Remote-Sensing and

Artificial Neural Networks (PERSIANN; Hsu et al., 1997),  and Cli-

mate Prediction Center Morphing Product (CMORPH; Joyce et al.,

2004). TRMM,  PERSIANN, and CMORPH begin in  1998, 2001,

and 2003, respectively, and extend through 2010. PERSIANN and

CMORPH capture precipitation equatorward of 60◦ N/S (covering

99.8% of major crop area) while TRMM extends poleward only

to 50◦ N/S (sufficient to capture 91% of major crop area). GPCP’s

1◦ daily precipitation product (v1.1; Huffman et al., 2001) from

October, 1996, through August, 2009, is also utilized below in the

evaluation of precipitation datasets.
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2.1.4. NASA/GEWEX Solar Radiation Budget data

The Solar Radiation Budget dataset assembled by  NASA and

the Global Energy and Water Exchanges Project (the NASA/GEWEX

SRB; Stackhouse et al., 2011) provides 1◦ daily incident solar radi-

ation data globally from 1983 to 2007. These data have been

distributed widely through the Agrometeorology Product of NASA’s

Prediction of Worldwide Energy Resources website (POWER;

http://power.larc.nasa.gov). POWER provides the FlashFlux radi-

ation data after 2007, however these data were not used as this

would introduce a substantial discontinuity from 2007 to 2008.

White et al. (2011b) found that SRB provides higher correlations

with high-quality station measurements than do weather genera-

tion techniques over the United States, and  also noted that SRB may

improve upon many cooperative station measurements of solar

radiation (which are  often poorly maintained) or sunshine hour

reports (which are inherently subjective).

2.2. Calibration and evaluation networks of meteorological

stations in agricultural areas

To develop and evaluate the climate forcing datasets we inde-

pendently constructed two meteorological station datasets: the

first for calibration of parameters related to the diurnal temper-

ature range and the number of rainy days (described in  the next

section) and then a  larger second set for evaluation. These datasets

were restricted to agricultural areas to emphasize the regions of

expected application and  to ensure that errors in  high-latitude

regions (where solid precipitation under-catch is often a prob-

lem; Adam and Lettenmaier, 2003) do not force compensating

errors over farmed land. Agricultural areas were defined by using

the 5 arcmin Monfreda et al. (2008) agricultural coverage maps,

summing together land use for maize, wheat, rice, soybean, cot-

ton, millet, sorghum, sugarcane, sugarbeet, groundnut, and barley

(Fig. 1a; including additional crops does not dramatically alter agri-

cultural areas).

2.2.1. Calibration meteorological station dataset

The calibration dataset (Fig. 1b)  was generated by  drawing sta-

tions from the US Historical Climate Network, the Global Historical

Climate Network, the National Climatic Data Center’s Global Sum-

mary of the Day, and additional stations (∼7%) provided by AgMIP

partners. The aim in  constructing this dataset was to mimic  the agri-

cultural density with comparable station density, leading to more

stations in regions with widespread agriculture, only a sampling

of stations in the more sparsely farmed areas, and  no stations in

places like Greenland where row agriculture is not prominent. Sta-

tions were selected to have a minimal number of missing values

in the 1980–2010 period, and stations not representative of their

surrounding agricultural lands were removed (e.g., a high eleva-

tion station on Mount Fuji in Japan). In areas with a  high density of

stations we were able to locate stations with at least 90% tempo-

ral coverage for temperature and precipitation, but stations with

longer gaps were included in important agricultural zones that

would otherwise not be  represented (none with less than 50% of

daily precipitation data from 1980 to  2010). Station data quality

assessment (utilizing algorithms and then hand-checks) allowed

us to flag exceptionally high precipitation events, unnatural strings

of consecutive values, artificially-filled data, unphysical data (e.g.,

rainfall < 0 or days where Tmin exceeded Tmax), trends and regime

shifts suggesting a moving station, and temperatures that were

more than 4 standard deviations from the monthly mean and not

associated with physically consistent deviations in  other variables

and surrounding days. Nearby stations and even media reports

were examined in  order to  corroborate high precipitation events

that were not erroneous. In total, the calibration dataset includes

737 meteorological stations (49 provided by AgMIP partners).

2.2.2.  Evaluation meteorological station dataset

The evaluation dataset (Fig. 1c) was drawn from the 6103

meteorological stations in the Hadley Integrated Surface Dataset

(HadISD version 1.0.0.2011f; Dunn et al., 2012) according to a five

step quality control process. First, stations that did not fall on

the Monfreda et al. (2008) agricultural land mask (Fig. 1a) were

eliminated. The HadISD dataset has undergone extensive quality

control on temperatures, but no such corrections have been made

to precipitation. The second step was  therefore to flag  years in

which precipitation observations were recorded but less than 10

rainfall events occurred despite a  station having more than 1000

rainfall events over the 1980–2010 period. This process elimi-

nated stretches in which missing data were erroneously recorded

as 0  mm/day measurements. As a third step, years in which less

than 10 dry days were recorded were flagged as periods where

observations were only taken when precipitation occurred. Fourth,

rainfall events over 200 mm in  a single day were eliminated, as a

sub-sample revealed many of these to be spurious outliers that are

potentially the result of accumulated precipitation being reported

as a single day’s total (for  example a  whole weekend of rain-

fall being measured on Monday). This outlier threshold removes

0.23% of total days, which undoubtedly contains several true events

but is small compared to an overall 30% wet-day rate. Calcula-

tions including these high rain events resulted in  overall reduced

skill as  would be expected when including erroneous data points,

however the inclusion of these results did not affect overall pat-

terns in skill across the considered climate datasets. Finally, each

station was  classified according to its temperature and precip-

itation coverage over the 1980–2010 period, and the top three

classes were included in the evaluation dataset. The vast major-

ity of these stations have measurements for at least 90% of the

daily temperatures and precipitation, while stations with at least

80% temperature and 50% precipitation coverage were included to

augment the representation of tropical regions. In total, 2324 sta-

tions are included in the evaluation dataset. While the evaluation

dataset is 3×  larger than the calibration dataset, it is likely that sev-

eral stations are  present in both datasets; however calibration was

restricted to universal coefficients governing the diurnal tempera-

ture range and number of rainy days (described in the next section)

rather than local corrections that would give a  false impression of

fidelity.

It is  likely that many of the stations included in the HadISD

dataset were also incorporated into the construction of GPCC,

CRU, and WM  gridded temperature and  precipitation observational

datasets. Disentangling the station and gridded datasets is beyond

the scope of this study, but the resulting gridded datasets contain

a host of additional information (e.g., additional stations within a

given grid box, interpolation rules, and weather stations in neigh-

boring grid box) that would prevent a one-to-one match between

station observations and the gridded products. The gridded obser-

vational datasets also do not contain sub-monthly information,

enabling a clear comparison between the climate forcing datasets

and HadISD station datasets on the daily timescale.

3. Calculation

Table 2  provides an overview of the methods utilized in  the con-

struction of each variable included in the AgMERRA and AgCFSR

climate forcing datasets. Details of these procedures are provided

below.

3.1. Scope and resolution of AgMERRA and AgCFSR

The AgMIP climate forcing datasets are designed to cover the

1980–2010 period, providing 30 full planting seasons even for
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Fig. 1. Creation of a network of meteorological stations in agricultural regions for calibration and evaluation of climate forcing datasets for agricultural applications. (a)

Percentage  of land used for agricultural purposes (major crops from Monfreda et  al., 2008; note that the darkest green color includes many areas with well more than 20%

agricultural  land use); (b) preliminary network of stations used for calibration (color represents source of data); (c) HadISD agricultural subset used for evaluation (color

represents  different levels of data coverage–red and black stations were not used in this study).

crops planted near the end of the calendar year and harvested

in the next (e.g., winter wheat in the Northern Hemisphere and

summer crops in the Southern Hemisphere). These 30 seasons rep-

resent the World Meteorological Organization’s minimum number

of years for a climatology (WMO,  1989), and thus the climate forcing

datasets allow for the simulation of a full climatology of agricultural

response. Data are  provided at daily resolution to  match the input

resolution of the vast majority of crop models, and are  stored on

UTC rather than local time (implications of this choice are discussed

in the gap-filling section below). AgMERRA and AgCFSR contain

the variables necessary for these agricultural models to function,

including minimum and maximum temperature (Tmin and Tmax),

precipitation, solar radiation, wind speed, and relative humidity

(from these, secondary variables like vapor pressure or potential

evapotranspiration may  also be  calculated).

AgMERRA and AgCFSR are stored at 1/4◦ horizontal resolution,

although temperatures and solar radiation are derived from coarser

datasets, as  described below and summarized in Table 2.  Data are
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provided on all land areas where precipitation data were available

for the construction of both AgMERRA and AgCFSR. Final cover-

age is constrained mostly by  the CRU and MERRA-Land, excluding

Antarctica and glaciated portions of Greenland but also many of the

small Pacific islands. AgCFSR data do not include land areas north

of 73◦ N and the portion of Siberia that extends into the Western

Hemisphere; these areas include little agriculture. Together, the

datasets include more than 99.7% of the major agricultural lands

from Monfreda et al.  (2008).

3.2. Maximum and minimum temperatures

AgMERRA and AgCFSR temperatures for any given day d in

month m of a given year were generated in  a four-step process

summarized by the following equations:

TavgAgMERRA (d, m) = TavgMERRA (d, m) + Tadj (m) (1)

TmaxAgMERRA (d, m) =  TmaxMERRA (d, m) + Tadj (m)

+ � (DTRCRU (m) − DTRMERRA (m)) (2)

TminAgMERRA
(d, m) =  TminMERRA

(d, m) + Tadj (m)

− � (DTRCRU (m) −  DTRMERRA (m)) (3)

First, daily maximum, minimum, and average temperatures

from the original MERRA and CFSR reanalyses were linearly inter-

polated to a 1/2◦ grid. Second, the average temperature for each

calendar month m  was calculated from each reanalysis as  well

as the 1/2◦ global gridded observational datasets provided by  the

Climate Research Unit (CRU TS3.1; Harris et al., 2013)  and the Uni-

versity of Delaware (Willmott and Matsuura, 1995;  WM).  To reduce

biases in the station density, aggregation, and interpolation of the

gridded observational datasets, at each point the average of CRU

and WM was calculated for each month and  compared against

the corresponding average monthly temperature from the inter-

polated reanalysis. As the WM dataset ends after 2008 and CRU

was only available through 2009 at the time of calculation, the

remaining years were estimated using mean biases between the

gridded datasets and reanalyses in  the 1980–2008 period when

all were available. The difference in average temperatures for any

given month, Tadj(m), is then added to daily average, maximum, and

minimum temperatures within that month to impose the observed

monthly mean.

Next, we compare the monthly average diurnal temperature

range (DTR) from the reanalysis and CRU (WM  DTR is not avail-

able) using days in a given calendar month from all years (denoted

with an overbar for the month, DTRCRU(m), which is the same e.g.,

for July, 2004, as for July, 2009). As  many agricultural models sim-

ply average the daily extreme temperatures rather than resolving

the diurnal cycle, we ensure consistency by adding a  fraction, � ,

of the difference in DTR to the Tmax and the same portion is sub-

tracted from the minimum temperature. For AgCFSR �  was set to

1/2, resulting in the exact matching of CRU’s DTR as  was done for

each of the other climate forcing datasets. Utilizing the calibration

station dataset, for AgMERRA we found reduced biases in  mean Tmax

and Tmin when � = 3/8, resulting in a  final DTR that is 3/4 of the way

between the DTR of MERRA and CRU (e.g., if DTRCRU(m)  = 14 and

DTRMERRA(m) = 10, DTRAgMERRA(m)  = 13). The benefit of including

MERRA DTR (albeit at a 1/4 weighting) suggests that MERRA’s

dynamical core can capture diurnal processes not captured in CRU’s

aggregation and interpolation procedures.

Finally, we ensure that Tmax > Tmin on those rare  days where

small diurnal cycles in reanalyses are overwhelmed by  differences

between the mean diurnal temperature ranges of  MERRA and CRU.

In these cases Tmax and Tmin are separated by 0.4 ◦C about their

average.

The result is a  daily time series of Tmax,  Tmin, and Tavg that

have the reanalyses’ sub-seasonal patterns and diurnal skew

(whereby [Tmax − Tavg] /=  [Tavg − Tmin] and Tavg /= [Tmax + Tmin]/2 in

most cases). Tavg has the monthly averages (and therefore interann-

ual variability) of the global gridded observational datasets, and

Tmax and Tmin follow with their characteristic diurnal temperature

ranges. Its  effective resolution comes from the 1/2◦ global datasets,

but the 1/2◦ value is stored in  each of  four 1/4◦ gridboxes to  match

the eventual resolution of AgMERRA and AgCFSR (leading to the

1/2◦ effective resolution for temperatures in Table 2).

To evaluate the daily variability of Tmax and Tmin, the sea-

sonal cycle was  averaged across all years in  each dataset and then

smoothed with a 15-day averaging filter. After removing this sea-

sonal cycle we are able  to  compare daily anomalies between the

evaluation dataset, the climate forcing datasets, and the reanalyses,

in addition to comparisons of mean bias.

3.3. Precipitation

The AgMIP climate forcing datasets are designed to  take

advantage of the reanalyses’ recognition of large-scale condi-

tions susceptible to precipitation events while recognizing that

reanalysis parameterizations struggle to capture rainfall frequen-

cies, distributions, and totals (Bosilovich et al., 2008; Lorenz and

Kunstmann, 2012). AgCFSR, like each of the existing climate forcing

datasets, begins with reanalysis precipitation (from CFSR) that does

not include any precipitation assimilation. AgMERRA, however,

utilizes the MERRA-Land precipitation dataset that incorporates

precipitation observations from the CPC (Reichle, 2012).

AgMERRA and  AgCFSR precipitation adjust the original reanal-

ysis time series in  a  four step process. First, the original daily time

series is linearly interpolated to the 1/2◦ CRU grid (MERRA-Land is

missing for ocean points, so some coastal regions were re-gridded

using nearest neighbor interpolation).

The second step adjusts daily precipitation events (defined as

those with at  least 0.1 mm).  For AgCFSR these are shifted to match

the number of precipitation days in  that particular month indicated

by the CRU TS3.10 dataset (Harris et al., 2013; missing 2010 wet

days estimated from 1980 to 2009 overlap when reanalyses and

CRU were available). For AgMERRA the calibration dataset indicated

that the best result occurs when the number of rainy days was set

to the average of the wet  days in CRU and those in MERRA (defined

as those with at least 0.5 mm;  using a 0  mm wet/dry threshold

for reanalyses results in  too many rainy days). If the re-gridded

reanalysis had too many precipitation days, amounts for the equiv-

alent number of days with the lowest precipitation totals were

changed to  zero. If additional precipitation days were required,

0.3 mm  rainfall events were added for the necessary number of

days beginning with those with the least solar radiation (indicating

the presence of clouds on a  day where precipitation was not simu-

lated). The GRASP dataset was generated with a similar procedure

for adding and removing rainy days, while the WATCH datasets

adjusted the number of precipitation days downward but did

not create any additional precipitation days to overcome monthly

shortfalls.

Monthly precipitation totals from the re-gridded and wet-day-

corrected reanalysis data are then compared against the ensemble

average of three 1/2◦ gridded observational products (CRU, WM,

and the Global Precipitation Climatology Centre Full Data Product

version 6, GPCC, Schneider et al., 2011)  to produce an adjustment

factor multiplied by  each day in that month. This results in an

adjusted value at 1/2◦ resolution (P
′
AgMERRA(d, m)), as  described for
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AgMERRA by Eq. (4) (AgCFSR uses CFSR in  a  similar manner):

P
′
AgMERRA (d, m) =  PMERRAland (d, m)

× 1

3

((
PCRU (m) + PWM (m) + PGPCC (m)

)
PMERRAland (m)

)
. (4)

Although GPCC data were available over the entire 1980–2010

period, the WM dataset ends after 2008 and CRU was  only avail-

able through 2009 at the time of calculation. 2009 and 2010

were therefore estimated using mean biases between the gridded

datasets in the 1980–2008 period when all were available. An

ensemble of multiple gridded observational datasets was  utilized

in order to take advantage of offsetting biases in their aggregation

and interpolation algorithms. Although it is likely that particular

products perform best in specific regions, no product is  clearly

superior in all regions and  global consistency is preferable to  a

patchwork of datasets.

The final step utilizes the suite of high-resolution precipitation

products (HRPP) to achieve additional resolution in  precipita-

tion. Although shorter than a full 30-year climatology, these HRPP

provide enough years that their mean differences for any given

calendar month capture fine-scale differences due to land cover,

coastlines, and terrain without being overwhelmed by particular

storm events. For each 1/2◦ gridbox from the gridded observational

products, the ensemble of TRMM,  CMORPH, and PERSIANN provide

four 1/4◦ gridboxes (i  = 1,2; j = 1,2). Precipitation scaling factors are

then calculated according to each grid box’s fraction of the 1/2◦

aggregated value. These scaling factors are  then applied to all days

within a given calendar month (e.g., all March days are multiplied

by the same scaling factors regardless of year), adding geographical

detail at 1/4◦ resolution as described by the following equation:

PAgMERRA (d, m,  i, j) = P
′
AgMERRA (d, m)

×
(

PTRMM ((, i, j) + PCMORPH (m, i, j) + PPERSIANN (m, i, j)
)

∑
i,j

(
PTRMM (m, i, j) + PCMORPH (m, i, j) + PPERSIANN ((m, i, j)

) .

(5)

The above procedure describes the final creation of AgMERRA

and AgCFSR precipitation, however many other methodologies

were evaluated against the calibration station dataset and ulti-

mately found to fall short of desired results. One noteworthy

approach employed a quantile-mapping approach to adjust the

mean of the distribution of precipitation events while holding con-

stant the shape parameter of its fitted gamma  distribution (Wilks,

1995). A second approach used quantile-mapping to adjust the

reanalysis precipitation to match that of a gamma distribution fit

to the HRPP datasets. These approaches ultimately failed because

it was too difficult to maintain the overall integrity of the multi-

year gamma  distribution while also forcing specific monthly totals

to match the gridded observations, and precipitation at many loca-

tions was better described by a  form other than the gamma  distri-

bution. The second approach had the added challenge of overcom-

ing substantial and fundamental differences in  the shape parame-

ters of the fitted gamma  distributions for the reanalyses and HRPP.

In addition to the mean biases, we evaluate sub-seasonal vari-

ability of precipitation using statistical methods reflective of the

probability of occurrence for various events (Wilks, 1995). For wet

days (precipitation > 1 mm)  we employ the hit rate (HR1)  defined

by the following equation:

HR1 = DD +  WW

DD + WW + DW + WD
×  100% (6)

where DD represents the number of days that were dry in  both

the climate product and  observations (across all evaluation dataset

locations), WW the number of days that were wet in both the cli-

mate dataset and observations, and the remaining days are either

wet in  the climate dataset and dry in observations (WD; some-

times referred to as  false alarms)  or vice-versa (DW). Hit rate may

therefore be understood as the percentage of correct wet or dry

representations out of the total number of days. For more extreme

precipitation events (precipitation > Q  mm)  we  account for the fact

that a  persistent dry forecast would give a  false appearance of skill

in the hit rate, and  instead utilize the threat score (TSQ) defined by

the following equation:

TSQ = WW

WW + DW + WD
× 100%, (7)

where each of the events are tested against a threshold of Q mm.

The threat score may  therefore be understood as the percentage of

days where the climate dataset correctly identifies a precipitation

event compared to the total number of days where the precipitation

event is either anticipated by the climate dataset and/or actually

observed.

3.4. Solar radiation

Crop models require accurate solar radiation to drive their sim-

ulation of photosynthesis and the carbon balances that govern

plant growth. Although the CFSR and MERRA reanalyses contain an

equivalent downward shortwave radiation flux, the variable is not

assimilated and is  subject to biases from cloud parameterizations

that remain among the largest challenges in numerical weather

prediction. Following White et  al. (2008), AgMERRA and AgCFSR

utilize the NASA/GEWEX SRB solar radiation whenever it is avail-

able (July, 1983 through 2007). Rather than use only the monthly

mean SRB values to adjust daily solar radiation time series as  was

done in the other climate forcing datasets, AgMERRA and AgCFSR

directly utilize the SRB data after linear interpolation to a  1/4◦ grid.

To fill in the periods when SRB data are not available (1980-June,

1983 and 2009–2010), downward shortwave radiation flux from

the original reanalysis was  first linearly interpolated to a 1/2◦ grid.

As shortwave radiation cannot be negative and is capped by astro-

nomical limitations (determined by  latitude and  Julian day), we fit a

beta distribution (Wilks, 1995) to the SRB and  re-gridded reanalysis

for each month (e.g., one SRB distribution describing 806 July days

from 1983 to 2007). Using maximum solar radiation to scale the

Beta distribution described by  p  and q parameters at each location,

solar radiation from the reanalysis was  shifted (using quantile-

mapping) to match the properties of the SRB distribution in years

when SRB data were not available. In some high-latitude locations

the p parameter was  capped at 200 to offset poor distributions in

months when the sun set for the winter or re-emerged in  the spring,

with only small errors due  to the low maximum radiation in these

months.

3.5. Relative humidity at  Tmax and 2-m wind speed

Although required for only a  substantial subset of  crop models,

a measurement of near-surface atmospheric moisture and wind

speeds allow most models to utilize more advanced evapotrans-

piration (ET) parameterizations that estimate turbulent moisture

fluxes in the crop environment. These variables also have appli-

cations related to the emergence and  spread of agricultural pests

and diseases. For each of these purposes the biophysical response

is dependent most directly on  vapor pressure deficit (VPD; the

difference between saturated VP  and actual VP), however VPD is

rarely measured directly. Relative humidity (the ratio of  actual

VP/saturated VP)  serves as  a suitable proxy but experiences a  large

diurnal cycle as temperature variation causes large swings in  the

saturated VP that often overwhelm ET contributions to actual VP.
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Relative humidity typically peaks near sunrise (when temperatures

are at their coldest) and then falls to a  minimum in  the hottest part

of the day before ET and cooling temperatures reverse the decline

(Ruane and Roads, 2007b). As the crop models require daily inputs,

AgMIP discussions encouraged the creation of a dataset for “rela-

tive humidity at maximum temperature” (RHTmax ; recorded at 2  m

elevation), which can be converted to vapor pressure and dewpoint

temperature because they correspond with a specific temperature.

RHTmax approximately corresponds to  the time of peak ET (and min-

imum relative humidity), and also mimics the ∼2 pm local time

sling psychrometer observations that were often used  to estimate

VPD when the crop models were being developed.

AgMERRA and AgCFSR rely on  their original reanalyses for

RHTmax and wind speed as  moisture and wind observations in

the free atmosphere are  included in the assimilation procedures

of MERRA and CFSR. The assimilated observations tend to come

from above the crop canopy level, however, resulting in potential

biases and differences in temporal variation between reanalyses

at the 2-m level (Ruane and Roads, 2007b). As  neither reanalysis

directly records relative humidity in  their output, we calculated

RHTmax using the specific humidity and surface pressure corre-

sponding to Tmax (Curry and  Webster, 1999)  and then linearly

interpolated RHTmax to the final 1/4◦ grid. Wind speeds from MERRA

and CFSR were likewise interpolated to the 1/4◦ grid for AgMERRA

and AgCFSR, the latter following a  reduction of wind speed by 25.2%

to estimate 2 m wind speed from the 10 m value in agricultural

conditions (Allen et al., 1998).

4. Results

4.1. Maximum and minimum temperatures

Figs. 2 and 3 present key diagnostics for AgMERRA and AgCFSR

Tmax and Tmin validated against the HadISD-based dataset (Figs. 2a

and 3a) and compared against other climate forcing datasets and

reanalyses. AgMERRA and  AgCFSR have nearly identical monthly

average temperatures (differing only for 2010 when neither

CRU nor WM were available), however the diurnal temperature

range adjustments (� in Eqs. (2) and (3))  lead to slight differ-

ences in Tmax and Tmin. Comparisons between AgMERRA/MERRA

and AgCFSR/CFSR reveal the improvements gained through the

methodologies above.

The spatial pattern of  biases (Fig. 2c and  d)  shows a gen-

eral warm bias in AgMERRA and AgCFSR Tmax, with the largest

biases in countries where station density is low and in moun-

tainous areas where complex topography is  not resolved at

coarser grid scales. The histogram of  mean Tmax biases (Fig. 2b)

offers another visualization of the overall warm bias, with

AgMERRA and AgCFSR peaking at +0.5 ◦C  along with the Prince-

ton and WATCH datasets. The warm bias is therefore likely

due to a bias between the HadISD data and the gridded obser-

vational datasets (CRU and WM)  used in the construction of

the climate forcing datasets. AgMERRA’s � reduces the warm

bias slightly in comparison to AgCFSR, Princeton, and the WATCH

datasets, and each of these has a substantially tighter distribution

with reduced extreme biases compared to the coarser GRASP cli-

mate forcing dataset and the reanalyses.

Resolution of sub-seasonal Tmax in AgMERRA and  AgCFSR is

largely dependent on  the underlying reanalyses (MERRA and

CFSR), as adjustments from CRU and WM  constrain only the

monthly timescale. Fig. 2e shows a  histogram of Pearson’s cor-

relations (r) between each climate dataset and the 2324 stations

in the evaluation dataset on  a daily timescale after the average

seasonal cycle has been removed. AgMERRA, AgCFSR, MERRA,

CFSR, and the WATCH datasets all group together tightly with very

high correlations (peaking near r = 0.9), with AgCFSR correlations

slightly ahead of WFD  among the highest two. The products based

on coarser reanalyses have lower correlations, with GRASP and

the R2 forming a second, slightly wider group peaking near r = 0.85

and the Princeton correlations peaking at r  = 0.6. Daily correlations

are highest in  the mid- and  high-latitudes (Fig. 2f), likely due to  the

reanalyses’ relative comfort with synoptic patterns as opposed to

tropical climates. AgCFSR improves slightly upon AgMERRA daily

correlations in much of the world (Fig. 2g), although AgMERRA

correlations are  higher in many of  the tropical areas (where corre-

lations in  both products tend to be lower). AgMERRA, AgCFSR, and

the WATCH datasets have the lowest root-mean-squared differ-

ence against the evaluation dataset (RMSD near 2.6 ◦C), suggesting

superior performance with regards to the combination of mean

biases and  correspondence in  sub-seasonal variability (Fig. 2h).

AgMERRA and AgCFSR generally have slightly negative Tmin

biases (Fig. 3c and d). As  was noted for Tmax,  larger biases occur

in regions where meteorological stations are less dense and where

mountain and valley stations are not adequately represented by

large grid boxes. The tight distributions of AgMERRA, AgCFSR,

Princeton, WFD, and WFD-EI biases all peak at −0.5 ◦C, again sug-

gesting that there is a noteworthy difference between the gridded

observational datasets and the evaluation dataset of Had-ISD sta-

tions (Fig. 3b). The AgMERRA distribution is again closest to zero

bias, benefiting from the combination of MERRA and CRU diurnal

cycles.

Histograms of Tmin daily correlations (Fig. 3e) look very similar

to those of Tmax, however the WFD-EI and especially the WFD-EI

have substantially more stations in the r = 0.95 bin. AgMERRA and

AgCFSR both peak at r  = 0.9, with the vast majority of stations hav-

ing r  > 0.7. Once again daily correlations are highest in  the mid- and

high-latitudes (Fig. 3f). Patterns of differences between AgCFSR and

AgMERRA’s correlations are also accentuated (Fig. 3g), with AgCFSR

better outside of the tropics (where correlations in both products

tend to be highest) and  AgMERRA higher in the tropics (where

correlations tend to be lowest). The improvement from MERRA to

AgMERRA (and from CFSR to AgCFSR) is  clear in the Tmin RMSD

(Fig. 3h), which again places AgMERRA and AgCFSR with WFD  and

WFD-EI as  the top-performing climate datasets (mean RMSD near

2.6 ◦C).

The warm bias in Tmax and cool bias in Tmin combine to overesti-

mate the diurnal temperature range for all climate forcing datasets,

while the original reanalyses are in closer balance with the HadISD

DTR but have a much wider spread (Fig. 4a). This suggests that the

� factor in  Eqs. (2) and  (3) would have been higher had the HadISD

dataset been used in the calibration process, resulting in overall

reductions in  DTR. The Tmax and Tmin biases compensate in  a  con-

venient manner for AgMERRA and AgCFSR, peaking tightly at 0 ◦C

average above the Princeton, WFD-EI, and  WFD  datasets (Fig. 4b).

Although these climate forcing datasets’ DTRs are too high, the

compensating biases suggest that the bias for daily average temper-

atures would be lower than either the Tmax or Tmin biases and that

the products capture an  appropriate diurnal cycle as  represented

by the ratio of (Tavg − Tmin)/DTR.

4.2. Precipitation

Precipitation diagnostics for AgMERRA and AgCFSR precipita-

tion are  compared with the evaluation dataset and other climate

products in Fig. 5. Due to the combination of unrealistically frequent

extreme events and numerous missing days reported in  many of the

HadISD stations’ precipitation records, the mean precipitation rate

was determined to be too problematic as  a basis for  climate prod-

uct validation. To illustrate this, Fig. 5a  shows the mean annual

precipitation from AgMERRA and Fig. 5c presents its biases against

the evaluation dataset. While these biases are  low over much of
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Fig. 2. Diagnostics of AgMERRA and AgCFSR Tmax against 2324 stations in  HadISD-based evaluation dataset (2324 stations) and against other climate forcing datasets and

reanalyses.  (a) Mean Tmax from HadISD-based evaluation dataset; (b) Histogram of mean Tmax bias; (c) AgMERRA mean Tmax bias; (d) AgCFSR mean Tmax bias; (e)  Histogram of

Pearson  correlations for  daily Tmax (with seasonal cycle removed); (f) Geographical pattern of AgMERA Tmax correlations; (g) AgMERRA-AgCFSR differences in Tmax correlations;

(h)  Root-mean-squared difference from daily Tmin series. Note that the left-most and right-most bins in the histogram contain all values beyond the limits of the x-axis.
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Fig. 3. Diagnostics of AgMERRA and AgCFSR Tmin against 2324 stations in HadISD-based evaluation dataset (2324 stations) and against other climate forcing datasets and

reanalyses.  (a) Mean Tmin from HadISD-based evaluation dataset; (b) Histogram of mean Tmin bias; (c) AgMERRA mean Tmin bias; (d)  AgCFSR mean Tmin bias; (e) Histogram

of  Pearson correlations for daily Tmin (with seasonal cycle removed); (f) Geographical pattern of AgMERRA Tmin correlations; (g) AgMERRA-AgCFSR differences in Tmin

correlations; (h) Root-mean-squared difference from daily Tmin series. Note that the left-most and right-most bins in the histograms contain all  values beyond the limits of

the  x-axis.
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Fig. 4. Diurnal temperature range comparisons. (a) Mean DTR bias; (b) Average of

Tmax and Tmin biases. Note that the left-most and right-most bins in the histogram

contain  all values beyond the limits of the x-axis.

North America where station precipitation quality control has been

most extensive, in other parts of the world there is a  substantial dry

bias.

Fig. 5b shows a  histogram of percentage differences between

AgMERRA and the other climate forcing datasets at each of the eval-

uation station locations, and  includes the gridded observational

datasets (CRU, WM,  and GPCC) to compare against established

observational datasets while also recognizing observational uncer-

tainty. AgCFSR matches AgMERRA due to the identical imposition

of monthly precipitation totals from the ensemble of gridded cli-

mate products, and therefore matches the climatology presented in

Fig. 5a. The gridded observational datasets tightly cluster around

their ensemble average, with differences within 10% for the vast

majority of sites examined. MERRA-Land and the WATCH forcing

datasets have a slightly wider distribution of mean differences,

with MERRA-Land peaking at  zero difference and  the WATCH

datasets peaking with slightly wetter conditions. This difference

is approximately the size of the adjustments to the CRU precipita-

tion made by WATCH (but not AgMERRA or AgCFSR) to account for

the “under-catch” of solid precipitation (Adam and  Lettenmaier,

2003), however this correction was also made for the Prince-

ton dataset, which is only slightly wetter than AgMERRA and

AgCFSR and peaks tightly at zero difference. GRASP and the coarser

reanalyses have a  very wide distribution of mean differences, indi-

cating both wetter and  drier regions are common. Note that here

we evaluate percentage differences rather than precipitation totals,

which would appear small in arid regions even with high percent-

age differences. This more sensitive metric also identifies that the

coarser reanalyses and GRASP have a  large number of sites where

precipitation is at least 50% higher than is captured in the construc-

tion of AgMERRA.

Although the HadISD dataset proved unsuitable for mean

precipitation validation, the daily observations are helpful in deter-

mining the sub-seasonal character of precipitation across the

evaluation dataset. These variations are largely determined by the

underlying reanalyses, although adjustments in  the number of

rainy days and monthly totals also affect the frequency and inten-

sity of precipitation events. Fig. 5d presents a histogram of the

correlation of daily precipitation in each climate product compared

to the HadISD station data. AgMERRA’s correlations are substan-

tially higher than any of the other climate forcing datasets, peaking

in the r = 0.8 bin with a  substantial number of stations in the r = 0.85

and r  = 0.9 bins and very few stations having correlations below

r = 0.2. These results are particularly encouraging given the large

spatial variability in precipitation and the likelihood that some

precipitation events are not well captured by a  sparse network of

stations (Dzotsi et al., 2013). AgMERRA’s performance is  clearly the

result of  its basis in  MERRA-Land, which has the best overall perfor-

mance through a  combination of  MERRA’s simulation of the water

cycle and MERRA-Land’s additional incorporation of CPC precipita-

tion data. AgCFSR, WFD, WFD-EI, GRASP, MERRA, and CFSR all peak

at r  = 0.7 with only a  small number of stations reaching r  = 0.85.

The older generation R2 and the coarse satellite product GPCP peak

at r = 0.4. The Princeton dataset is  omitted from these sub-monthly

precipitation metrics because it utilizes a resampling approach that

was not designed to  capture specific daily precipitation events

within a  given month. Including the 200+ mm rain events that

were eliminated as untrustworthy observations (or using higher

thresholds) reduces each of these correlations but does not affect

the overall pattern of AgMERRA having highest correlations and

AgCFSR landing with the other climate forcing datasets. AgMERRA

daily precipitation correlations tend to be  highest in areas with

the densest station coverage, suggesting that data quality in the

observational dataset is also a  potential limitation on reach-

ing high correlations (Fig. 5e). AgMERRA has higher correlations

than AgCFSR in  nearly all regions with the prominent excep-

tion of Argentina, where correlations are comparable to AgCFSR

(Fig. 5f).

AgMERRA also follows MERRA-Land as the top performing cli-

mate products for the wet  day hit rate (Fig. 5g), correctly identifying

whether a day was  wet  83.0% and 83.6% of the time, respectively.

WFD (80.5%), GRASP (79.8%), AgCFSR (79.8%), and WFD-EI (78.6%)

form the next group of high-performing products, with the other

reanalyses and the GPCP below 77%. Due to  the stochastic nature

of sub-monthly precipitation in the Princeton data, its hit rate is

slightly below the 70% mark that would be achieved by assuming

that each day was  a  dry day.

AgMERRA also follows MERRA-Land to achieve the top perfor-

mance among climate forcing datasets based on threat scores for all

(>1 mm), at least moderate (>25 mm),  and heavy (>50 mm)  precip-

itation events (Fig. 5h).  This relative performance also increases as

events become more intense, with AgMERRA’s threat score (53.9%)

approximately 10% higher than the threat score of the next best

climate forcing dataset (WFD; 48.3%) for events greater than 1 mm,

43% higher for events greater than 25 mm  (22.8% compared to

AgCFSR’s 15.9%), and  45% higher for events greater than 50 mm

(10.9% compared to AgCFSR’s 7.5%). Threat scores were not sig-

nificantly affected by  the elimination of 200+ mm  events, with

differences on the order of 0.01%.
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Fig. 5. Diagnostics of AgMERRA and AgCFSR precipitation against 2324 stations in HadISD-based evaluation dataset and against other climate forcing datasets and reanalyses.

(a)  Mean AgMERRA precipitation; (b) Histogram of mean precipitation differences against AgMERRA; (c) AgMERRA mean precipitation bias  against evaluation dataset; (d)

Histogram  of Pearson correlations for daily precipitation against evaluation dataset; (e) Geographical pattern of AgMERRA  precipitation correlations; (f) AgMERRA-AgCFSR

differences  in daily precipitation correlations; (g) Hit  rate of precipitation days in evaluation dataset; (h) Threat scores for each dataset’s 1 mm (left), 2 mm (center), and

50  mm (right) daily precipitation events in  evaluation dataset. Note that the left-most and right-most bins in the histograms contain all values beyond the limits of the x-axis,

and  that the Princeton dataset was  omitted from panels (d,g,h) because the current version resamples sub-monthly precipitation.
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4.3. Solar radiation

Fig. 6a presents the mean climatology of solar radiation from

AgMERRA, which is mostly a reflection of the NASA/GEWEX SRB

observational product that makes up the bulk of its values and  con-

strain the other years. AgCFSR is nearly identical, differing only at

the beginning and end of the 1980–2010 period when SRB data

were not available. Similarities between these two climate products

are evident in the histogram of differences (vs. AgMERRA) pre-

sented in Fig. 6b, which shows AgCFSR mean differences less than

0.25 MJ/m2/day at almost every location. The Princeton and GRASP

datasets are also very similar to the AgMERRA data, with less than

a hundred Princeton sites showing differences near 0.5 MJ/m2/day

in either direction and  the GRASP data also tightly distributed

around zero difference. WFD, WFD-EI, and the reanalyses have

a much wider distribution, indicating substantial differences in

comparison to the SRB data. WFD  generally shows a  negative

(cloudier) difference, while WFD-EI and the reanalyses have a

positive (brighter) difference at most stations (Bosilovich et al.,

2011).

4.4.  Relative humidity at  Tmax and wind speed

RHTmax and  wind speed are  taken nearly directly from the

MERRA and CFSR reanalyses. The exact mechanisms for differences

in CFSR and MERRA are beyond the scope of this study (Bosilovich

et al., 2011; Meng et al., 2012,  provide more detail on MERRA and

CFSR, respectively), but differences are a result of the simulation

of boundary-layer profiles as  both products assimilate nearly the

same observations of the free atmosphere. The mean climatolo-

gies are  presented here as references for future work. Fig. 6c and

d show very similar patterns in mean RHTmax for AgMERRA and

AgCFSR, respectively. AgMERRA tends to have higher RHTmax over

the tropics, most notably in Mesoamerica and  the Amazon, West

Africa, and Indonesia. Wind speeds (Figs. 6e and f) demonstrate

larger differences, although the most dramatic differences are  in

areas with little agricultural production (AgMERRA wind speeds

are greater at high latitudes and  over major deserts). Differences of

greater interest to the agricultural modeling community include

lower wind speeds over Eastern North America in  AgMERRA,

higher winds over Northern Europe in AgMERRA, and  lower

Fig. 6. Overview of AgMERRA and AgCFSR climatologies for radiation, relative humidity at Tmax, and wind speeds. (a) Mean AgMERRA solar radiation; (b) histogram of solar

radiation  biases in comparison to AgMERRA; mean RHTmax for (c) AgMERRA and (d) AgCFSR; mean wind speed for (e) AgMERRA and (f) AgCFSR. Note that the left-most and

right-most  bins in the histogram contain all  values beyond the x-axis.
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surface wind speeds associated with the Asian Monsoon regions in

AgCFSR.

5. Discussion

5.1. AgMERRA and AgCFSR advantages

Evaluating across all metrics, both AgMERRA and AgCFSR

emerge as strong, novel climate forcing datasets that are  appealing

for application and further development. The AgMERRA dataset,

however, has substantial advantages in  its daily precipitation per-

formance that recommend it most highly for immediate use.

Much of the procedure for AgMERRA and  AgCFSR is drawn from

the work that developed the Princeton, WFD, WFD-EI, and GRASP

datasets, however several distinguishing features promote their

use for agricultural applications. As  was done for other climate

forcing datasets, AgMERRA and AgCFSR utilize gridded observa-

tional datasets to remove biases that are  important to agricultural

production in the interannual variation and mean seasonal cycle

of temperature, precipitation, and solar radiation. AgMERRA and

AgCFSR use an ensemble of the gridded observational datasets

for temperature and precipitation, however, acknowledging

the uncertainties related to these datasets in sparsely-observed

regions, and draw from an  ensemble of high-resolution precipi-

tation products to capture enhanced spatial resolution. AgCFSR is

unique in its use of the most recent NCEP-based reanalysis system,

with higher original resolution and improved dynamics over

earlier generation reanalyses. AgMERRA also uses a modern gen-

eration of reanalysis that has not previously been developed into a

climate forcing dataset, featuring MERRA-Land daily precipitation

variation that demonstrates substantially higher correspondence

with observations than is seen in other climate forcing datasets on

this crucial agro-climatological variable.

The selection of a  climate dataset for any particular application

requires a process to match the agro-climatic properties of greatest

importance to the investigation and any model used. AgMERRA’s

sub-monthly precipitation fields make it most appealing for simu-

lations of rain-fed agriculture and the implications of water stress,

extreme events, and changing precipitation patterns. AgCFSR has

slightly better sub-monthly temperature fields, which may  be of

most interest for studies related to heat stress or irrigated condi-

tions. Both datasets also offer high-quality SRB radiation and are

unique in providing humidity data synchronized with the maxi-

mum temperature time of day to better resolve the diurnal cycle

of near-surface moisture for evapotranspiration and water stress

studies. Of course, the benefits of these improvements will only

be reflected by agricultural models that are accurately sensitive

to these features. Crop and livestock model responses to extreme

events continue to be a major focus of AgMIP, and it is likely that

continuing model improvement will further highlight differences

in the climate forcing datasets.

5.2. AgMERRA and AgCFSR limitations

AgMERRA and AgCFSR combine data from reanalyses with

global observational datasets to form a  best estimate of the daily

climate over the 1980–2010 period. The climate forcing datasets

are therefore expected to be most accurate for regions and atmo-

spheric processes where the underlying datasets are  least biased.

Errors in the reanalyses’ simulation of complex dynamics (par-

ticularly around convection and moisture fluxes throughout the

crop and boundary layers), the resolution of sub-grid-scale fea-

tures (particularly in mountainous regions), and interpolation and

assimilation of a sparse network of meteorological observations

(particularly, but not exclusively, in  developing countries) likely

manifest themselves in the AgMIP climate forcing datasets. For

example, synoptic weather patterns over the dense observational

networks of the United States and Europe are likely to be better

captured than convective rain events over mountainous portions of

Eastern Africa. These limitations are common to each of the climate

forcing datasets compared here.

AgMERRA and AgCFSR depend on datasets that are  not static

through time, so care must be taken in  analyzing long-term trends.

The gridded climate datasets that provide monthly values may be

affected by a changing number of nearby meteorological stations

in any given region, which may  alter the gridded value and nearby

interpolated values. Various satellite instruments also launched

over the 1980–2010 period, altering the types and quality of remote

observations assimilated into MERRA and CFSR. These changes may

affect long-term trends in  relative humidity and wind speed data,

and may  introduce subtle changes in the sub-monthly pattern of

temperature and  precipitation events. For all of the above reasons

it is important that AgMERRA and AgCFSR be considered as  climate

information records, not climate observations. While these datasets

were created to allow the simulation of agricultural production

and trends over the 1980–2010 period, strictly climatological trend

analysis will reflect the underlying observational datasets rather

than unique contributions of these blended products.

The combination of datasets and  largely independent adjust-

ment methodologies can lead to unphysical variable relationships

that may  be problematic for certain applications. For example,

separate adjustments to temperature, rainfall, and relative humid-

ity combine to throw off the balance of water and energy in  the

original data. Caution must therefore be used in  any application of

AgMERRA or AgCFSR data that solves for missing water and energy

budget components by  assuming a  closed water or energy budget.

The correlation between precipitation days and solar radiation

(which is  negative in  observations and  strongest in the GRASP

dataset) is also degraded slightly as reanalysis radiation data are

replaced with SRB data (see Reichle et al., 2011, for additional

information about MERRA’s rainfall-sunlight relationship). Higher

negative correlations in  the reanalyses follow a poorer correspon-

dence with observed precipitation and  solar radiation, as  shown

in the previous section.

5.3. Gap-filling applications

A common challenge for agricultural modelers is the need to fill

in data gaps in meteorological station records to allow continuous

simulations for a  given region when simple interpolation would not

be sufficient (gaps > 4 days). AgMERRA and  AgCFSR are particularly

helpful in  that they capture major synoptic events (e.g., heat waves

or storm systems) and interannual variability at most locations.

These data may  then be used to fill in observational gaps following

a simple bias-correction procedure, as  described for  AgMERRA by

the following equations:

Tmaxestimate
(d, m) = TmaxAgMERRA (d, m) + �Tmaxoverlap (m) , (8)

Tminestimate
(d, m) = TminAgMERRA

(d, m) + �Tminoverlap (m) ,  and (9)

Pestimate (d, m) =  PAgMERRA (d, m) ×  �Poverlap (m) ,  (10)

where � terms are determined by examining all days in  a  given

month where AgMERRA and observations exist and then differenc-

ing temperatures (Tobs − TAgMERRA), and  � is a  ratio formed in  the

same manner for precipitation (Pobs/PAgMERRA). Solar radiation and

wind data may  also be adjusted according to distribution fits or bias

ratios, and the relative humidity can be  converted to  vapor pressure

or dewpoint temperature using the revised maximum temperature.

The resulting estimate contains the sub-monthly and interann-

ual variability of the AgMERRA dataset while also removing mean
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biases between a  particular location and the AgMERRA grid box  that

it corresponds to. It is important to visualize these filled time series

data to ensure that the final result matches expectation, and to rec-

ognize that in some cases the �  terms may  not be representative

of the whole 1980–2010 period (e.g., in situations where AgMERRA

Tmax biases rise in proportion to temperature anomalies). In regions

far from the Prime Meridian there is an  increasing chance that the

local day’s weather conditions will differ from the corresponding

date in the universal time clock (UTC; pinned to the Prime Merid-

ian) used in AgMERRA and  AgCFSR. On occasion it may  therefore

be necessary to draw Tmax from a day prior or past the UTC date. In

many applications this difference is  small compared to the sensi-

tivity of a crop model, and an examination of correlation maps from

Figs. 2 and 3, Fig. 5  reveals no  substantial longitudinal dependence

on daily correlations.

6. Conclusions and future development

The AgMERRA and AgCFSR climate forcing datasets contain

the variables required for a  large number of agricultural mod-

eling applications on a  climate time scale, providing consistent

coverage (even in areas where reliable station data  are  not avail-

able) and enhanced resolution of precipitation events in AgMERRA.

AgMERRA currently supplies time series for AgMIP’s Coordinated

Climate Crop Modeling Project (C3MP; Ruane et al., 2014a)  and

forms the basis of gap-filling for AgMIP’s Regional integrated

assessments in Sub-Saharan Africa and South Asia (Rosenzweig

et al., 2012; Ruane et  al., 2014b).  AgMERRA and AgCFSR also

provide driving datasets for AgMIP’s Global Gridded Crop Model

Intercomparison (GGCMI; Elliott et al., in review). Owing to  its

superior performance on sub-seasonal temperature variability,

AgCFSR is being used to  drive irrigated wheat models for the sec-

ond phase of the AgMIP Wheat Model Intercomparison (Asseng

et al., 2013). These datasets may  also be used as  an  improved his-

torical basis for the generation of  future climate scenarios (e.g.,

Hempel et al., 2013),  providing more realistic climate variabil-

ity and extreme statistics of daily precipitation as a target for

statistical downscaling. Both datasets are  freely available online

(http://data.giss.nasa.gov/impacts/agmipcf), and an AgMIP inter-

face is under development to allow sub-setting and re-formatting

of these products for tailored applications.

Future versions of AgMERRA and AgCFSR are under develop-

ment and will likely confront additional challenges not included in

the version presented here. Evolution will be possible with each

new release of the gridded observational datasets or reanalysis; a

process that has already improved several of these products since

this version of AgMERRA and AgCFSR was first calculated. A  pri-

mary interest is to extend these datasets through at least 2012,

which would capture the severe drought conditions experienced

that year in the United States. New precipitation products may  also

hold promise for combination with AgCFSR in a manner similar to

the way in which CPCU rainfall provided such benefit to AgMERRA

(via MERRA-Land).

Improvement is  likely possible in areas with complex ter-

rain, as lapse-rate corrections can improve temperature and

relative humidity that have been interpolated onto a  grid-box

with substantially different mean elevation. For AgMERRA and

AgCFSR these corrections will be  oriented toward the eleva-

tion of agricultural production rather than the mean grid box,

which will be important in regions like Greece or Chile where

agricultural production occurs in  the valleys of tall moun-

tain ranges. Sub-daily-scale versions of these products are also

possible and would meet  an increasing demand for agricul-

tural applications related to global vegetation and irrigation

modeling.
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